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Abstract. Discrete Element Method modeling is used to study the frequency spectrum of particle motion in
dense 3D packings of glass beads with Hertz-Mindlin contacts. Frequency sweeps show a dependency of the
resonant frequencies on the drive amplitude and confining stress on the system, showing material changes in the
system. The amplitude dependency of the second thickness mode 3�/4 as identified by the internal strain field
scales as f / �1/6 while the confining stress dependency scales as f / �2/3, as predicted by Hertzian theory.

1 Introduction

Granular media exhibits complex behavior dependent
on particle composition and contact network. Despite
considerable e↵orts, it remains challenging to characterize
a sample of material without disrupting or destroying
it. Thus the development of nondestructive probing
techniques to investigate the linear and nonlinear elastic
behavior of granular media by wave propagation is an
active field of research[1–3]. It remains however di�cult
to observe grain-scale mechanisms in a dense packing
of particles, to understand and interpret probing results;
DEM grain-scale modeling[4] allows us to study particle
contacts and motion in granular media to understand
how grain-scale mechanics a↵ects wave transmission
in the material. This work contributes to the research
on nonlinear behavior in granular materials by studying
resonant frequencies [5–8], and uses as reference the
oedometric cell experiments of Jia et al.[9, 10] on acoustic
waves propagation in dense packing of glass beads.

We build 3D dense packings of glass beads using Dis-
crete Element Methods with Hertzian contacts (Fig. 1).
On each packing equilibrated at a confining stress � we
perform a series of independent frequency sweeps with in-
creasing drive strain "

drive (Fig. 2). We report the local
strain inside the material and extract one resonant mode of
the system and study this mode as a function of the con-
fining stress and drive strain (Fig. 3). We show that the
results follow predictions from Hertzian theory. Finally,
we present the dynamic vertical strain profile for a selec-
tion of frequency sweeps and formally identify the second
longitudinal bulk mode 3�/4.
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Figure 1. (left) Picture of a packing at � = 10 kPa, the walls
are in blue. Beads have radii 3 · 10�6 m (yellow) and 4 · 10�6 m
(red). (right) scheme of the strain measurement protocol. The
vertical position of two layers of particles (in red) are recorded
over time, the di↵erential distance �l between each layer gives
the local strain (see eq. 8).

2 Methodology

The simulations are implemented using the Discrete Ele-
ment Method (DEM) code LIGGGHTS[11]. Particles are
generated in a simulation box with periodic boundaries
along the x- and z-axis, and enclosed by two walls along
the y-axis. These walls are implemented as particles of
infinite radius and mass.

Particles interact through Hertz-Mindlin contact me-
chanics with rolling resistance and viscous damping.
Hertz-Mindlin contact law implements an accurate repre-
sentation of normal elastic interaction between two rigid
bodies, and a simplified version of tangential contacts
which assumes that no micro-slip occurs at the contact



interface between two particles; particles either ’stick’ or
’slip’, if they reach the Coulomb threshold. This nonlinear
contact force allows us the study of nonlinear behavior in
granular material, while limiting the cost of solving tan-
gential contacts. The force F

i

on each particle i is defined
as the sum of its interactions with other particles j and vis-
cosity factor:
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where the tangential overlap �t
i j

truncated to fulfil kF
t
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k (with the friction coe�cient xµ = 0.22). n̂
i j
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are the normal and tangential unit vectors of each contact
i j. u

i

is the particle velocity (u
i j

the di↵erence in particle
velocity), �n

i j

the normal overlap between particles i and
j (Hertz theory) and �t

i j

the tangential overlap (simplified
Mindlin Theory).

A small viscous damping with coe�cient �
a

=
10�7 kg/s stabilises the algorithm and approximates the ef-
fect of dry air at room temperature.

For the grain material, the Young’s modulus Y =
65 GPa, Poisson ratio ⌫ = 0.25 and loss coe�cient � =
0.0163 (� 0) give a shear modulus G = Y/(4(2�⌫)(1+⌫)),
with the elastic constants given by:
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and the viscoelastic parameters given by:
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The e↵ective radius R

⇤ and mass m

⇤ depend on the re-
spective radii R and masses m of the two interacting parti-
cles: 1/R⇤ = 1/R

i

+ 1/R
j

and 1/m⇤ = 1/m
i

+ 1/m
j

.
The rotation velocity of each particle i is updated as:
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with the moment of inertia I

i

, the vector from the cen-
ter of the particle i to the contact point r

i

, the tangential
component of the force exerted on the particle i F

t,i and a
torque at each contact:
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where µ
r

= 0.01 is the rolling resistance and
�!
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= !
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is the relative angular velocity[12].

The timestep for all simulations is dt = 8 · 10�8 s.The
Discrete Element approach is a step-wise integration of
Newton’s equations.

Each sample is independently prepared (a sample
packing is represented on the left of Fig. 1 (left)). A

random packing of bidisperse particles is generated in the
simulation box. The bottom wall (in y = 0) remains static,
while the top wall is servo-controlled to apply a target con-
fining stress �. A gradient velocity field is applied to par-
ticles to smoothly compact them (maximum initial veloc-
ity v

max

= 6 m/s). At each time-step, the algorithm will
attempt to reach the confining stress specified for the top
wall by testing several displacements and choosing the one
closer to target stress (with a velocity limit of v

max

). In the
beginning of the simulations, particles and top wall move
downward and particles compact against the bottom wall.
After 0.2 s, a sinusoidal vertical movement A sin(!t) is ap-
plied to the bottom wall to perturb the system. The ampli-
tude A of the perturbation is defined such that the applied
dynamic strain equals A/ly = 5 · 10�5. The frequency is
set to ! = 2⇡ · 10 kHz. This perturbation is stopped after
1 s and the sample is allowed to relax for 7.8 s. Energy is
dissipated via viscous damping and the loss coe�cient �.

Samples are prepared with simulation box dimensions
of l

x

= l

z

= 10�2 m and an initial height of 2.5 · 10�2 m
(the final sample height ly ⇡ 1.2 · 10�2 m depending on
the sample). Approximatively 4100 particles of radii
3 · 10�4 m and 4 · 10�4 m are created and compacted. This
procedure creates independent packings identified by their
confining stress � = 10 kPa, 22 kPa, 55 kPa and 113 kPa.

Each frequency sweep is performed using the same
initial sample preparation. A packing is loaded and the
bottom wall is servo-controlled to maintain the target con-
fining stress. The top wall is vertically displaced with a
sinus A sin(!t), increasing ! = 2⇡ f step by step. To pro-
duce the data presented in Fig. 2, a packing at 10 kPa
was driven from f = 1 kHz to f = 103 kHz by steps of
300 Hz. Each frequency was maintained for 100 periods
to let the system reach a dynamic quasi steady-state. The
drive amplitude A ranges from 5 · 10�8 to 6 · 10�5 m ("

drive

from 4.13 · 10�6 to 4.95 · 10�3 m). The vertical position
of two layers of particles is recorded 50 times per period
over the whole frequency sweep. These layers include all
particles with initial height y

i

2 0.2ly ± 2 · 10�2 m and
y

i

2 0.4ly±2 ·10�2 m respectively (about 120 particles per
layer) to eliminate boundary e↵ects.

We define the strain "!
i

(t) with the height di↵erence
between the two encompassing layers l1 and l2 (shown on
Fig. 1 (right)). The layer height is ly(t) = yl2(t) � y

l1(t)
and we define the local strain on the last 60 periods of
oscillation at !

i

as:
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The local strain amplitude "
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) is the variation
amplitude of "!
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(t). We therefore detrend the strain "!
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(t)
by applying a moving-average window of one-period
length, and fit the sinus function "
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).
The ratio of "

local

versus drive strain ✏
drive = A/ly is

reported in Fig. 2 in function of the drive frequency f for
di↵erent drive amplitudes.

The sample is excited by vertically moving the topwall
and letting the bottom wall free to adjust to maintain con-
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Figure 2. Frequency sweeps at progressively increasing ampli-
tudes on a packing loaded at � = 10 kPa. The top wall inputs a
perturbation at frequency f and strain "

drive. The strain amplitude
"

local

is recorded close to the bottom of the box. The three first
peaks correspond to the modes 1�/4, 3�/4 and 5�/4.

fining stress. As a consequence, a standing wave will have
an antinode at the top wall, and a node at the bottom wall.
The first mode to satisfy these conditions is 1/4 of a wave-
length �. The harmonics are then 3�/4 (outlined in black
on Fig. 4 (left)) and 5�/4.

3 Results and discussion

Packings at 55 kPa and 113 kPa were probed with com-
pression and shear tests; at � = 55 kPa, the sample has a
Young’s modulus E = 1.36 · 108 kPa and Poisson ratio ⌫ =
0.39. The sample at � = 113 kPa has E = 1.66 · 108 kPa
and ⌫ = 0.40. These results are of the same order of mag-
nitude as results from similar simulations[13] and from
experiments[14].

Fig. 2 shows a series of frequency sweeps performed
on a packing at � = 10 kPa. Each sweep was indepen-
dently performed on the same initial packing, varying
only the drive amplitude. Three main peaks are visible
at low drive strain "

drive, which correspond to the modes
1�/4, 3�/4 and 5�/4. As the amplitude increases, peaks
broaden (i.e dissipation increases in the system) and shift
to lower frequencies. The dependency of the resonant
modes on the drive amplitude is a nonlinear feature of the
system, and shows a weakening of the material resulting
from the increased drive amplitude. This result is in qual-
itative agreement with experimental observations [10].
Equivalent measurements were made for the confining
stress 22 kPa, 55 kPa and 113 kPa.

For each packing and each sweep, the resonant fre-
quency, drive strain and local strain of the mode 3�/4 are
reported in Fig. 3 (top). Hertzian contacts define the con-
tact force between two spheres as F = Y

p
R

⇤ �n3/2[14].
We therefore expect the applied confining stress � and the
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Figure 3. (top) The resonant frequency of the mode 3�/4 are
extracted from frequency sweeps (see Fig. 2) of four packings
at specific confining stresses �, and reported here. (bottom) The
frequency f and local strain "

local

of the mode are scaled accord-
ing to predictions of Hertzian theory. The results overlap and
show a weakening of the material at higher drive amplitude/local
strain for all confining stresses.

quasi-static strain "0 due to � to evolve as:
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where the associated elastic constant K
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We therefore expect the resonant frequency to scale as
f / (�/K)1/6 and "

local

/ (�/K)2/3. In Fig. 3 (bottom) we
present rescaled data from Fig. 3 (top). All four datasets
collapse on the same line, indicating that our samples
follow Hertzian behavior. Furthermore, we observe that
for all confining stresses the material weakens as the local
strain increases. This indicates a change in the material
behavior due to particles rearranging.

In Fig. 4, we present the vertical strain profile over the
packing for frequencies of the mode 3�/4 at three drive
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Figure 4. Formal identification of the mode studied in Fig. 3 for
a packing at � = 10 kPa. On the bottom right are the frequency
sweeps of the three studied drive strain "

drive. In red are the pairs
("

drive, f3�/4). (left) The system is driven with each pair, and the
local strain amplitude is reported along the height of the system.
The black line shows the ideal result for the mode 3�/4.

strains "
drive. On the right are shown the selected fre-

quency sweeps with, circled in red, the peaks at f3�/4. The
packing at � = 10 kPa is vibrated for 200 periods at the
three pairs (A, f3�/4). Each local strain is measured by two
neighbouring layers of 2 · 10�4 m of height, at a distance
of 0.214ly following the lock-in procedure presented in
the methodology (figure on the right presents local strains
computed over 0.2ly) and plotted in Fig. 4 (left). Out-
lined in black is the theoretical mode of 3�/4. We observe
that all three local strains qualitatively follow the predicted
resonant mode. The deviation from the theoretical outline
(notably the node at 0.66ly) is likely due to heterogeneity
in the material, leading to local di↵erences in behaviour.

4 Conclusion

A 3D model of granular particles was built using Discrete
Element Method with Hertz-Mindlin contact model and
rolling resistance. Samples were packed at target con-
fining stresses and probed across a range of frequencies.
Model parameters and processing methods were carefully
chosen to obtain a high precision and detect frequency
shifts of less than 100 Hz. Clear resonant frequencies can
be observed for drive strains "

drive as low as 4.13 · 10�6,
which do not modify the sample and show linear behav-
ior.

A shift in resonant frequency at an increasing drive
strain, for several resonant modes in the system are ob-
served. The mode 3�/4 is identified by vertical dynamic
strain profiles through the samples, and its dependency
on the confining stress shown to follow predictions of
Hertzian theory. These results show a weakening of the

sample at higher local strains, showing a change in the
particle arrangement of the material. Research has shown
that contacts have a significant impact on resonant fre-
quency and damping, with humidity or ageing shifting
resonance[15]. The relation of these factors, including
confining stress, to an observed resonant frequency re-
quires further research.

In future research we analyse the response of pack-
ings at confining stresses above 100 kPa. Since frequency
sweeps are non-destructive probing techniques of material,
we hope to contribute to knowledge regarding its applica-
tion to the testing of granular samples.
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